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OF F L O W S  OF L I N E A R - P O L Y M E R  S O L U T I O N S  A N D  MELTS 
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The formulation of a rheological equation of state (RES) that establishes a relationship between the 
stress tensor, kinetic characteristics, and internal thermodynamic parameters is the main problem of the 
dynamics of linear-polymers solutions and melts. At present, a large number of such equations of various 
complexity [1, 2] are known, but a consistent theory of linear and nonlinear relaxation phenomena in polymer 
systems has not yet been developed. This is due to both the complex topology of these systems, which are 
formed by tangled macromolecules, and mathematical difficulties [3l. 

Phenomenological and microstructural approaches are used in writing RES. The RES obtained 
phenomenologically are a certain interpolation of experimental data. To describe different types of flows within 
the framework of a single model, RES are obtained in the most general form [2]. In this case, application of 
RES to an actual polymer system can become an insoluble problem. 

In the microstructural approach, methods of statistical mechanics are used. However, to obtain closed 
systems of equations, often one has to introduce additional assumptions, In turn, this sometimes involves 
insuperable difficulties in at tempts to generalize one or another theory. At the same time, an advantage of the 
microstructural approach is the possibility of studying the relationship between the microcharacteristics of a 
polymer system (concentration and molecular weight of the polymer) and macroscopically observed quantities 
(viscosity, shear and normal stresses, etc.). In this connection, it is of interest, using microstructural concepts, 
to formulate a sequence of RES that takes into account new molecular effects in each step. Pyshnograi et 
al. [4--6] obtained and studied a simple rheological model which can be chosen as an initial approximation in 
formulating such a sequence of RES. 

In this work, RES [4--6] is extended to the case of allowance for the additional corrections caused 
by intrinsic viscosity and the delayed interaction of a macromolecule with its environment. The resulting 
equations can be recommended as a first approximation in constructing a sequence of RES. 

D y n a m i c s  o f  a M a e r o m o l e c u l e  in Flow. The microstructural approach to the description of the 
dynamics of polymer systems is based on model concepts of motion of polymer systems. Realization of 
this approach involves sequential solution of two problems: formulation of the equations of dynamics for a 
macromolecule and transition from the formulated equations to RES. Since it is difficult to take into account 
the details of the chemical structure of polymers, the equations of dynamics of the macromolecule cannot be 
formulated without additional assumptions. Two significant assumptions are used most often: 

(1) A monomolecular approximation in which a single chosen molecule moving in the effective medium 
formed by the solvent and the other molecules is considered instead of the entire set of macromolecules in the 
volume. 

(2) The possibility of identifying, irrespective of the chemical nature of the polymer, the slow thermal 
motions of the chosen macromotecule with the motion of N centers of friction (beads) connected in series 
by elastic entropy forces (springs). These assumptions lead to the following equations of the dynamics of 
macromolecules [5-8]: 
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where p7 and ~p~' are the ith components of the generalized coordinate and velocity, m is the mass of a bead. 
F 7 is the force of hydrodynamic entrainment, T~ is the intrinsic viscous force, r is a random force, and 
2T#A~ is the coefficient of elasticity. 

The definition of the forces F~' and Ti a allows one to specify the polymer system. Different models of 
these forces correspond to different physical cases. The force F7 describes the interaction of the polymer chain 
with the environment via the solvent. For dilute polymer systems, in which polymer macromolecules can be 
considered noninteracting, the force F7 can be found by solving the problem of particle motion in a viscous 
fluid in the Stokes approximation: 

r 7  - ( ( r  - ' =  ,jpj ). (2) 

Here ~ is the friction coefficient of a bead in a monomer fluid, vii is the velocity-gradient tensor, which is 
conveniently expressed below as the sum of symmetric 7ij and antisymmetric wij  parts, and the bracketed 
expression is the difference between the particle velocity at a given point of space and the velocity of 
undisturbed flow at this point. Expression (2) is the basis for the description of the dynamics of dilute 
polymer systems [8]. 

In modeling of concentrated polymer systems, in which macromolecules cannot be considered 
noninteracting, expression (2) needs generalization. This is caused by the necessity of taking into account 
the reaction of the environment and the strengthening of the friction coefficient. The first factor is due to 
the delayed character of interaction of the macromolecule with its environment, and the second is due to the 
fact that the chosen bead undergoes resistance not only from the side of the monomer solvent, but also from 
the side of other macromolecules. Furthermore, one should take into account that, in a flow with nonzero 
velocity gradients, a macromolecular coil elongates along the flow, and the medium formed by the elongated 
coils becomes anisotropic. This anisotropy of the mobility of beads is called induced and is determined by the 
shape and orientation of macromolecular coils [9, 10]. Allowance for all these factors leads to the following 
equation for the force of hydrodynamic entrainment: 

( d  " - ~  . - 
i + r 7  = 0 r - . -  - v ,,r i i - ( 3 )  

Here r is the relaxation time of the environment,/3 ~ is the dimensionless tensor friction coefficient of a bead, 
B is the measure of strengthening of the friction coefficient (, and p is a parameter. 

The bracketed expression on the left side of (3) is a substantial derivative of the vector quantity ['~' 
[1]. The presence of this derivative allows one to satisfy the principle of material objectivity in Eq. (3) [1, 2]. 
The numerical parameter p entering into the definition of the substantial derivative can take different values. 
For p = 0, the substantial derivative becomes the Jaumann derivative which has a simpler form, and, for 
p = 1 and -1 ,  it becomes the upper and lower convective derivatives, respectively. The specific value of p 
corresponding to one of the above-mentioned derivatives in (3) is determined below. 

When macromolecules form a tangled system, in addition to the force of hydrodynamic entrainment, 
one should take into account the intrinsic viscous force r~, as is shown by Pokrovskii [7, 8]. The specific 
requirement imposed on the force T/a is the vanishing of this force with rotation of a macromolecular coil as 
a unit [7, 8]. This allows one to replace (2) by the expression 

T~' ~ ( r  - w i j p ; ) .  

The intrinsic viscous force T/a, like F~, is of a relaxation character and depends on the anisotropic 
properties of the environment. Therefore, the first expression for this force can be written in a similar manner 
as Eq. (3) in the form 

) - = - ( E e i i ( ~ b i  - w i . p , , )  , (4) r - ~ T ~  w i j T  7 - F T i i T 7  + T ~ '  o , , 

where e~ 1 is the dimensionless tensor friction coefficient and E is the measure of strengthening of the friction 
coefficient r for the intrinsic viscous force T/a. 
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We assume that  the anisotropy of mobility in the polymer system considered is characterized by the 
0 second-order symmetr ic  tensor aik. Then, for the coefficients/3~ and ~ij we write [9, 10] 

130k= {,ik + ~, a.ii - '  o - '  
- -  ' - -  T 

Thus, (1), (3)-(5) is the system of equations of dynamics of a macromolecule. The  random force r 
entering into (1) is the Gaussian random process with a zero average. Its correlation tensor satisfies the 
corresponding f luctuat ion-dissipat ion relation in [7, 10]. 

S t r e s s  T e n s o r  a n d  R h e o l o g i e a l  E q u a t i o n  of  S t a t e .  The  behavior of a polymer system based on 
Eqs. (1), (3), and (4) is discrete or microscopic. Transition to the continuous case, i.e., to the description 
of polymer-system flows within the framework of cont inuum mechanics, requires introduction of macroscopic 
variables - -  the density p(x, t) and the pulse density pu(x,  t). These variables are introduced in the standard 
manner  [7, 8]: 

p (x , t )  = ~ - ' ~ m ( 6 ( x - r a ) ) ,  p v ( x , t ) =  ~ " ~ m ( u a h ( x - r ~ ) ) .  (6) 

Here r a and u a are the radius vector and the velocity vector of a bead with number  ~, x is the radius vector 
of the chosen point in space, and t is time; summation is performed over all beads in a unit volume, and 
averaging is performed over the  ensemble of all possible realizations of the random force r  

Differentiating (6) with respect to t ime yields an equation of conservation of mass, and transformation 
to generalized coordinates with allowance for (1) yields an equation for pulse density. In the latter case, we 
have an expression for the stress tensor of a polymer system in terms of statistical characteristics of the 
solutions of system (1), (3), and (4): 

[ ~1 ~1 ] ~k = -po6~k + 3,~T ~ ~k - 5~k - (~,~k + ~,~), (7) 

where p0 is the pressure, n is the  number  of macromolecules in a unit  volume, T is the tempera ture  in energy 
units, and x• = 2pAa,(p~p~[3 and u 5 = (p~T~I / (3T)  are internal thermodynamic  parameters that  describe 
the departure of a macroscopically nonequilibrium system from the state of equilibrium [11]. 

The the rmodynamic  variables x~k entering into (7) characterize the inertial properties of a 
macromolecular coil and, hence, can be used to determine the anisotropy tensor aik in (5). Following [10], we 
write 

~k = 6 ~(~5 - 6~k13)I(~) �9 

Hence, it becomes possible to establish the physical meaning of the microanisotropy parameters entering 
into (5). These parameters  take into account the dimensions (ee, u) and shape (8, ~) of a macromolecular coil 
in the equations of dynamics of a macromolecule. 

We introduce relaxation equations for the dimensionless moments  x~k and u~k. In the inertia-free case 
(m = 0), Eqs. (1), (3), and (4) can be writ ten as 

[~ R o ] ( ,  Ro x ) ~  5ij + B~-/, (~ii + ~e,~ [r - wj,p~] = p -~ "~ij + BT-,, ~i,,~,i - ~ 6ii Pi + ~.~(t). (8) 

Here 

is a new random process which is 5 correlated [10], r R = ( / ( 4 T # ) ~ )  = r*/c~ 2 is a set of the Rouse relaxation 
times, and r = E / B  is the measure of intrinsic viscosity. 

Using (8), we obtain a closed system of equations for the moments  (PTP~) and (P7r 

d 
d-t (pC[p~) = (P7r + (P~'r 
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(9) 

The moment ( p ~ ) ,  which is unknown in (9), can be found from the fluctuation-dissipation theorem. 
But there is another method. The equilibrium values of the moments (PTP~) and (p7r were determined 
previously by Pokrovskii [11]: 

1 
(PTP~)o = 2l~Ac, 6ilc, (P742~)0 = 0. (10) 

These values should be obtained from (9) at zero velocity gradients, and the moments (p'~p~) and 
(p~'42~) enter into (9) in a linear manner. Hence, taking into account the desired moment ( p ~ ) ,  in (9) we 
should replace the moments (p~p~) and (p~'r that do not have the velocity-gradient tensor as a cofactor by 
(P~P~) - (p'~p~)o and (p~42~') - (p~'r respectively. 

Going over to the dimensionless moments z~k in (9), we have 

D a cr = 1 ( (  1 ) a  ( 1 ) ~ )  
"~ x~k- xiajTjnc~k- xknTjn ni 2Br~ x~k--~6i~ bik + x ~ i - - ~ 6 k i  bji , (11) 

where 

0)-, ( 0) o 
- -  O J t j X j k  - -  W k j X i j  

is the Jaumann derivative of the tensor quantity z~' k- 
Multiplying (4) by p~' and averaging the resulting expression, we write the following equation for u~t: 

( . )  _ _ _  o ,~ ,, . .,~ d ~ r CB42 Zij((Pi 42j) -wP*(Pi P.)) .  (12) 
o. 3T 

We find the moment (42~T~) entering into (12) by multiplying (8) by T~' and performing averaging. 
Using (10), we finally obtain 

D a . a 1 1 ua 
Dt u~k - P'Ytiui~ - ciiiTJ"uk" + ~ ci~ui~ + -r it 

1 )  R .  ) . o  . o  
biiek i, ciieki). = z~ - ~ 6ij fTt - 2Br~ ziiT/nd~n ( f~  = d~/k = (13) 

The RES (7), (11), and (13) define a nonlinear, anisotropic, viscoelastic fluid. These equations for 
p = 0 coincide with those obtained in [9], where the Jaumann derivative was used in expressions (3) and (4) 
for the forces F~ and Tia. The behavior of system (7), (11), and (13) is determined by the six dimensionless 
parameters (X = r /2Br* ,  d2,/~, ~, ee, and v) and the two dimensional parameters (Br* and nT). The parameter 
X characterizing the ratio of the relaxation time of the environment r to the maximum relaxation time Br* 
was estimated in [7-10, 12], where it was shown that X << 1 for sufficiently long polymer chains. As to the 
parameter 42, here two cases can be distinguished: r << 1 [4-8, 10] and 42 >> 1 [7, 12], which are discussed 
below. As in [10], it is convenient to consider simpler forms of these equations by using the smallness of the 
parameters X and 42. 

Ze ro th -Order  Ap p rox ima t io n  Models.  In the zeroth approximation for X and r the variable 
u~' k = 0 and Eqs. (7) and (11) take the form 

1 

The parameters of this system are Br*,/3, and ze. Solving Eqs. (14) for a simple shear flow with shear 
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velocity vl2 with third-order accuracy with respect to v12, for viscosimetric functions we obtain 

Oll--0"22 _ w  4 -- 71"4 o"12 [ 4 71"4 (~ _ ~ )  ] 
@ l -  (v12)2  45nT'  t~2= a22 0.33 = - - - t i n T ,  q - - -  - q o  1 -  t i +  (Br*v l2)  2 

(vl2) 2 90 v12 105 

Thus, the parameters m and fl are responsible for the nonlinear properties of system (14). For simph, 
shear, ti appears even in the second order with respect to the velocity gradients, and ae appears only in th(" 
third. 

In the case of a damb-bell model (N = 1), system (14) takes the form 

oik -po6ik  + 3 qo d 1 + (ae - t i ) l  2 3ti (15) 
= --TO aik' ~ aik -- vijajk -- vkjaji  + 7"0 aik = -~ "Yik -- -~o ai iaik '  

where q0 = nTro  and r0 are the initial shear viscosity and the relaxation time, and I = ajj.  Hence, under the 
assumption of isotropic relaxation (ti = 0), we obtain the well-known structural phenomenological Pokrovskii's 
model [13]. 

Model (15) is considered in detail in [4-6], where good agreement between the model and the steady 
flows of solutions and melts of linear polymers of various molecular weights and concentrations with simple 
shear [6] and initial tension [4] was established. 

F i r s t -Orde r  A p p r o x i m a t i o n  Model .  Aside from the advantages of the zeroth-order approximation 
model (15) (simplicity and high accuracy in describing steady nonlinear effects), the first-order approximation 
model does not permit one to predict all features of polymer flow. In particular, this is true for the dynamic 
modulus of shear. In this case, it is necessary to consider the contributions of the parameters X and ~, which 
take into account the relaxation character of the environment and the intrinsic viscosity in the equations of 
dynamics of a macromolecule. 

Since only effects of the first order with respect to X and r are of interest to us, we note that Eqs. (7) 
and (11) do not change, and Eq. (13) takes the form 

~ ( (  1 ) 0 - 1 0  R a 0 )  D a a ~ 1 o - 1 .  1 ~ z ~  .~S(i (~;.) ~tn-2BraxqTj.enk (16) 
~ k - ~ j ~ j  - 7o,~ik+yb-~.R(~j) "jk + 7"~k = - 

To obtain an expression for the dynamic shear modulus that corresponds to system (7), (11), and (16), 
we find a solution of this system in a linear approximation with respect to the velocity gradients. In this case, 
the anisotropy tensor ait~ is equal to zero, and the terms wi/: can be omitted. Then, Eqs. (11) and (16) are 
written as 

,~ ~ ~gk + ~'k = g ~ik + ~ + B~-. (x~j~jk + ~-'Ii~), 

( 1 R ~  ) B ~ 
r ~  -~ + uak = r ...~ .rg x~ k _ "3 ~fik _ 2Br[~ z i iTi  k + r~ (puqq/k + u~iTji) 

[~. = ~/e + (~ + r 1 6 2  r2 = ~ . / ( ~  + e~.)]. 

The latter equations can be written as 

exp ( - s / r a )  ds, 

0 

o 
_ 1 2BTaxijTjk)] t_sexp(_s/TaB)ds" + ~7i~ + ~ (xTk - -~ ~ k  - R 

(17) 

Solving the first of Eqs. (17) by the method of successive approximations with first-order accuracy with 
respect to the velocity gradients, we obtain 

1 pr + 2Br~ ~o 

0 
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Substitution of this expression into the second equation in (17) yields 

3ra~" ik(t -- s -- s ' )exp(-s /ra)exp(-s ' /vB)dsds  '. 
o o o 

For simple oscillating shear flow, for which vn  ", exp (-iwt),  the last two expressions together with 
(7) define the complex shear modulus G(w) = -iwal2(W, t)/gl2(W, t) 

G(W)nT = __ ( - r r(rar~' )rail) 
2 ~ 1 - iw(r  + 2Br~)  ( ' rr~ + 2 n C r ~ ,  ) -iwra B 

- 1 - iwra + r r ( ra  - r~ )  1 - iwraB" (18) 

Next, it is convenient to distinguish the real and imaginary parts in G(w): G(w) = G'(w) - iG"(w). 
When using expressions (18), one should distinguish three cases: 
(a) highly concentrated (c > 10%) solutions and melts of polymers, 
(b) half-dilute polymer solutions over a wide range of strain rates (c ~ 1-10%), and 
(c) extremely dilute solutions (c < 1%). 
In the first two cases, the curves G'(w) show a typical plateau, whose position depends weakly on the 

molecular weight of the polymer [14, 15], and in the third case, such a plateau is absent [14]. If the value of 
the modulus on the plateau is determined from (18), then 

G~(w) = lim G'(w) = n T ~  (pr + 2 B r ~ ) ( r  + CBr R) (19) 
+ (1 + 

This series converges only for p = 0. Thus, to cases a and b corresponds the Jaumann derivative in the 
equations of dynamics of a macromolecule (3) and (4). 

For extremely dilute solutions, usually, r = 0 [8]. In this case, irrespective of the type of convective 
derivative, a plateau on G'(w) is absent. 

442 



G'(w), 
d y n ~ m  2 

lo 4 

G"(~). 
dyn~m 2 

lO 4 

10 -2 10 - I  10 ~ 101 a ~ ,  see-' 

10 3 10 3 

10 2 10 2 
10 -3 10 -3 

i i i i i 
10 -2 10 - !  10 ~ 101 m ,  sec- '  

Fig. 5 Fig. 6 

We revert to the above estimates of the parameters X and r entering into the definitions of the relaxation 
times r,  rff, and r~. These estimates are given in [7-10, 12], where it was shown that ,  for sufficiently long 
chains, one can always assume that  X << 1. As to the intrinsic-viscosity parameter  r  here two alternative 
cases ~p << 1 and ~b >> 1 are distinguished. For ~b >> 1, which corresponds to the dynamics of melts and 
strongly concentrated solutions, from (19) we have G~ = (Tr2/12)nTx -1. 

Using the es t imate  for X "~ c-2M-1 obtained by Pokrovskii and Pyshnograi [12], from the last relation 
one can obtain G~ ,--, caM ~ and this agrees well with the experimental  data of Gr~ss ley  [14]. A detaild review 
of papers s tudying the case of r >> 1 is given by Pokrovskii [7]. We consider in more detail the case ~/, << 1, 
which corresponds to the dynamics of polymer solutions with a concentration of the order of 1%. The  curves 
of G'(w) and G"(w) versus the dimensionless frequency w* = Br*w calculated by (18) are given in Figs. 1-4, 
from which one can see that  the values of Ge(w) and G"(w) are mainly determined by the parameter  X, and 
the effect of the parameter  r (for r << 1) is insignificant. The  calculation results show that ,  for r << 1, the 
modulus on the plateau G~ ,,, X -1/2. Therefore, from the condition of nondependence of G~, on the molecular 
weight of a polymer we have 

X " M-2-  (20) 

To compare the calculation and experimental results, we turn to [15], where G~(w) and G"(w) were 
measured for solutions of polybutadiene with different molecular weights at the same concentration c = 
0.0676 g/cm.  In this case, the parameter  Br*  was es t imated from the value of the initial shear viscosity rio, 
which can be expressed from (19) as 

rt0 = lim G"(w) ~r 2 = m nTBv*. 
~--.o w 6 

The parameter  X = 0.025 was chosen for M = 3.5-105, and, for the other values of M, it was calculated 
using (20). A comparison of (18) and the data  of [151 is given in Figs. 5 and 6, from which one can see 
satisfactory agreement between the theoretical and experimental  curves of Ge(w) and G"(w) for w < 10 sec -1. 

Thus, the proposed microstructural  approach to the description of the dynamics of polymer fluids does 
not contradict the available experimental  data on the linear viscoelasticity of l inear-polymer solutions and 
melts and can serve as a basis for the description of nonlinear effects in these systems. 
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